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Small perturbation expansions in unsteady aerofoil theory 
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Perturbation expansions are derived to second order in a wavenumber parameter for 
the unsteady lift induced on an aerofoil by disturbances convected past it at  subsonic 
speeds. The results are used to discuss other approximate methods which have been 
used to predict the unsteady forces and noise generated by an aerofoil in turbulent 
flow. 

1. Introduction 
The effects of small convected disturbances in the flow past an aerofoil are usually 

treated by Fourier analysis, since the problem is linear. The simplest Fourier com- 
ponent to study is a convected two-dimensional sinusoidal gust of vertical velocity. The 
effects of such a disturbance whose wave fronts are parallel to the leading edge of the 
aerofoil were first calculated by Sears (1941) for incompressible flow. This type of gust 
is often referred to as bhe Sears gust. The solution given by Sears was later generalized 
by Kemp (1952) to cases when the gust was convected at speeds different to the free- 
stream speed. Many other analyses of similar basic incompressible two-dimensional 
types of problem exist and the majority lead conveniently to analytic expressions for 
the lift and other force coefficients in terms of well tabulated functions. 

Unfortunately however, no similar analytic solutions (in terms of a finite number of 
known functions) exist for those eases in which either the gust wave fronts are oblique 
to the aerofoil or the flow is compressible and subsonic. Accurate numerical results 
have been calculated for these cases by Graham (1970a, b )  and by Adamczyk (1971). 
Results such as these are required for the general study of an aerofoil in a subsonic 
turbulent flow, but bhe numerical results are inconvenient because they require 
fairly lengthy computation followed by further integrations to obtain the response to 
turbulence and also because they do not explicitly reveal the importance of the various 
parameters involved. As a consequence a number of approximate solutions have been 
derived and used to predict the effects of turbulence on the unsteady forces and noise 
radiation . 

In  the case of an oblique gust in incompressible flow (i.e. a vertical velocity distur- 
bance having both a non-zero chordwise and a non-zero spanwise wavenumber with 
respect to axes aligned with the aerofoil), Filotas (1969) and Mugridge (1971) have 
both given approximate solutions. More recently, Amiet (19764 has adapted his 
compressible solution, discussed below, to this case by making use of similarity rules 
(Graham 1970b) which relate all compressible and/or oblique gusts to one problem. 
Filotas obtained his solution by assuming an empirical pressure distribution over the 
aerofoil, correct at  zero and very high values of the spanwise wavenumber, and using 
this to obtain an approximate solution of the integral equation for the loading. In 
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contrast, Mugridge’s solution was obtained by approximating the integral equation 
according to the ideas of lifting-line theory, i.e. by neglecting chordwise vorticity on 
the aerofoil and using local two-dimensional solutions at  each cross-section of the 
aerofoil. 

The other problem, which has received more attention, is the extension of Sears’ 
solution to compressible subsonic flow. This problem has been expressed in the form 
of an integral equation for the pressure distribution by Possio (1938). Miles (1950a) 
gave a quasi-steady solution to Possio’s integral equation for small values of the re- 
duced frequency parameter k,  when the unsteady flow was caused by oscillations of 
the aerofoil rather than by a gust. His solution neglects terms of order k2, and above 
but does include the effects of non-zero Mach number M not only through the usual 
111 [ = I/( 1 - M2)4] Prandtl-Glauert amplitude correction, but also through a phase 
correction involving a function of M .  This recognizes the essential point that com- 
pressibility introduces phase shifts, particularly in signals coming from the vortex 
wake. Reissner (1951) transformed the linear differential (convected wave) equation 
for the potential # into a simpler form: 

where x and y are the streamwise and spanwise co-ordinates. The transformation 
introduces a factor of exp (ik,  M2x/p2} into the potential and hence the pressure distri- 
bution, but leaves the form of the boundary conditions unchanged except for the 1/p 
Prandtl-Glauert factor and a raising of the reduced frequency k, to k,/P2. Reissner 
went on to solve the equation by separation of variables, giving a solution for the prob- 
lem of an oscillating wing in terms of infinite series of Matthieu functions. 

It is apparent from the form of the above equation and its associated conditions 
that the problem involves two parameters: 

Osborne (1973) analysed the problem in this way and argued that a solution for small 
v could be obtained to  order v by neglecting the v2$ term in the differential equation 
and solving the remaining equation as an equivalent incompressible problem. Osborne’s 
result for the lift coefficient on an aerofoil in a Sears-type gust is 

where CLo is the incompressible lift coefficient given by Sears. 
This method of solution implies a division of the flow field into an inner ‘incom- 

pressible’ region and an outer acoustic region. It has been criticized by Amiet (1976b), 
who based his argument on reasons given previously by Miles (1 950 b )  that  the inner 
incompressible flow field of the lifting aerofoil includes a vortex wake extending 
infinitely far downstream. In  an earlier paper Amiet (1974) applies a correction to  
Osborne’s solution based on the Miles (1950a) low frequency expansion mentioned 
above. This correction introduces a phase change dependent on the Mach number and 
improves the overall agreement with numerical results. 

Kemp & Homicz (1976) have shown by an expansion of the Possio integral equation 
t o  first order that Amiet’s solution is correct to this order in the frequency parameter A. 
This result also becomes apparent from our analysis, which shows agreement to order 
(hlogh)2 between this solution and a series solution derived for small reduced fre- 
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quency k, and fixed Mach number. In  fact because of its form Amiet’s solution is quite 
accurate for all reduced frequencies a t  Mach numbers below 0.8. However transforma- 
tion of his theory to the cases of incompressible oblique gusts, required for representa- 
tion of turbulence, shows larger deviations from the accurate numerical results. (In the 
extreme case k,  = 0, the error is about 50 % at  a spanwise reduced frequency k,  = 1.0; 
see Amiet 1976a.) 
A reason for this difference in accuracy is that  two distinct types of perturbation 

expansion can be derived. The first, corresponding to the above cases, is an expansion 
for small h for fixed finite values of v/h, i.e. an  expansion for small values of the fre- 
quency k,  at  fixed Mach number in compressible two-dimensional flow and at  a fixed 
angle between the gust wave front and the leading edge in incompressible oblique flow. 
The second type of expansion, which is the main subject of the present paper, is an 
expansion in powers of v with h held fixed, i.e. a small Mach number or small spanwise 
wavenumber perturbation from the incompressible Sears solution. This expansion 
seems to be more applicable than the first for incompressible oblique flows but more 
limited for compressible two-dimensional flows. The second type of expansion is also 
different from the first in that  no first-order terms occur a t  all for the effects of com- 
pressibility or spanwise variability a t  fixed non-zero frequency. Therefore theories such 
as Mugridge’s for incompressible oblique flows which implicitly assume the existence 
of a first-order term must also be considered as corresponding to the first type (that is, 
in principle, for small k,  with k,/k, fixed). 

The method which we describe is an expansion of the integral equation for a function 
related to the unsteady pressure distribution as a series in terms of the small parameter 
v. This is a similar approach to that of Kemp & Homicz (1 976) taken to one order higher. 
The parameter v is generally a combination of the modified spanwise wavenumber 
k,//32 and the unsteady compressibility parameter k, M/P2.  The simplified integral 
equations of each order are then solved analytically in sequence, each equation being 
dependent on those of lower order. This process is equivalent to a matched asymptotic 
expansion, replacing the matching by the successive dependence of the integral 
equations. The similarity rules mentioned above enable the same method to be applied 
to all compressible oblique gusts with the parameter v taking either small real or small 
imaginary values. 

Since logarithmic terms are present in the perturbation series we adopt the usual 
convention of grouping these with all other terms containing the small parameter to 
the same power. Therefore, for example, v2 and v2 log v are both considered to be of 
second order. 

The series derived in this way are compared with the accurate numerical results to  
establish their range of validity. 

We assume throughout that  the aerofoil is thin, uncambered and at  zero angle of 
attack, and that the gust is a sinusoidal distribution of vertical velocity convected a t  
the free-stream speed. The effects of relaxing many of these conditions in the basic 
Sears-type problem have been studied by a number of authors. In  principle all such 
cases which give analytical solutions can be extended to oblique compressible flows by 
the methods outlined below. 

a - 2  
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2. Expansion of the integral equation 
We follow the notation of Sears throughout and take x, y and x axes in the stream- 

wise, spanwise and normal directions respectively with origin at the midchord of the 
aerofoil. All velocities are non-dimensionalized by taking the mean free-stream speed 
as the unit of velocity and all lengths by the semichord of the aerofoil. 

A general triple-wavenumber (k) vertical gust can be written as 

w(z ,  y, z, t )  = w(k) exp (i(wt - k, x - k,  y - k, z ) }  = @(y, t )  exp ( - i k ,  x - ik ,z) ,  say. 

Z(k) is a Fourier coefficient of a turbulent flow field or any other convected three- 
dimensional disturbance. It is convenient here to use the quantity @ to avoid con- 
tinuous repetition of the factor exp {i(wt - k ,  y)}, which is common throughout the 
analysis. 

The gust is assumed to be convected with the free stream, so that w = k,. Then, 
following Graham (1970b), the coefficient of loading Cap(z, y , t )  on the aerofoil is 
governed by the following integral equation and associated relations: 

vP(x,) K,(v(x, - x)) dz, = - n@ exp ( - ihx) + v 2  

where 

( 2 )  
2 

C,,(z, y, t )  = -exp {ik, M,x/P2} (m - jIl f ( x o )  dx,) . P 
and 

The K ,  are modified Bessel functions with their analytic continuation for complex 
arguments and 

(3) 

The third wavenumber k, of the gust does not enter the problem unless distortion of 
the vorticity in the gust is taken into account (see, for example, McKeough 1976), 
since the aerofoil lies in the plane z = 0. 

The main difficulty in the way of an analytical solution of ( 1 )  is the form of the inte- 
grand on the left-hand side. In  the special cases when v = 0 this integral takes the 
simpler form 

v = (k;/P2 - k2, M2/P4)*, h = k,/P2. 

1: $;dx,. 

This is the integral of two-dimensional thin-aerofoil theory, which can be inverted by 
a standard procedure. When both k ,  and M are zero, v is zero also and the solution of 
(1) for the lift coefficient 

C,,(xo) dxo 

This is khe result given by Sears (1941), which we take as our basic solution CLo. 
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There are also non-zero values of k, and M for which v = 0 but for which C, # C,, 
because of the factor exp (ik, M2x/P2} in ( 2 ) .  When v is non-zero it takes real or imagin- 
ary values according to whether k, M / k , P  3 1 .  This corresponds physically to  
whether, relative to  a frame of reference moving spanwise, so that the gust appears 
stationary, the velocity of the free stream is subsonic (v real) or supersonic (v 
imaginary), v is assumed in either case to be the positive square root. 

To illustrate the method of expansion we first consider incompressible flow, so that 

M = 0, v = k, = v,, say, h = k,. 
Then expanding ( 1 )  for small real v,, but, with h = O( 1 )  so that v2/h is also small, gives 
1 c F(xo)  {l/(x, - x) + 4(xo -x) v; log v, + +(x, - 2) (y  - log 2 - 4 4- log (x - xo)) v;} dx, 

- inJ1 f ( X o )  d x , ( i ( ~  + v;/2~2) exp [ih(l - x)] (in - i log 2 + i log (v,/h) - ivi/4h2) 
-1 

+ log [v,( 1 - x)] -log (2 - 7) - v ; / ~ ( I o ~  2 - y + 1 )  (1  - x), + ~:/4( 1 - x), log [vZ( 1 - x ) ]  

+ (1  + v;/h2) exp [ih( 1 - x ) ]  [ - exp [ - ih( 1 - x)] log [v2( 1 - x)] + log (v2/h) - y 

+Ci [h(l -x)] - iSi [A(  1 - x)] - ((log 2 -7) (1  -exp [ - ih( l -2)])  
- v;/4h2(10g 2 - y + 1 -log v,) [( - h2( 1 - x), + 2ih( 1 - x) + 2) exp [ - ih( 1 -x)] - 21 

+ v;/4h2(exp [ - ih( 1 - x)] [ - h2( 1 - x), log (1  - x) 
+ 2ih(l -x) log (1 - 2) + ih (1 -x) + 3 

+ 2 log (1  - 2 ) ]  + 2 log h - 3 - 2(Ci [h(l  -x)] - i  Si [A (  1 -x)] - y))]} + O(v$). ( 5 )  

y is Euler's constant and Ci and Si are the cosine and sine integrals. Both sides of ( 5 )  
contain only terms of order 1 ,  vi  log v,, v i  and higher. Therefore any 0(v2) term which 
might occur in the expansion is the solution of an integral equation containing neither 
the upwash u? nor a non-zero correction to  it from a lower-order term, and must be 
itself zero. We therefore expand F(x) ,  f(x) and C, as 

F ( x )  = F,(x) + F,(Z) v; log v, + F,(z) v; + -. ., 
f(4 = f o ( 4  +fiW v; log v2 + . f 2 ( 4  v; -I- * 

c, = c,, + c,, v; log 11, + c,, v; + . . . . 
7 

Substituting these into ( 5 )  and equating terms of like order, we obtain a series of 
integral equations of the form 

S ' l s d x o  = G ~ ( ~ ~ ~ ~ , ~ ~ - ~ ~ ,  FLJ, n 2 m > 0, 

where 6,, is the Kronecker delta. 
The Fn-,, terms, which are always of lower order, since m. 2 1,  if they occur at all, 

come from parts of the left-hand-side integrand of (5) which have beentakenoverto the 
other side of the equation. These and similar fm-m terms can be assumed to have already 
been calculated from solutions of lower-order equations and can be considered as an 
upwash correction. The equations for each order were solved by the integral-equation 
method described by Bisplinghoff, Ashley & Halfman (1955) for the Sears problem. 
The first-order equation is identical with the Sears problem. 
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After manipulation and integrationt we obtain the following series for the lift 
coefficient : 

C,(k,,k,) = 2 n a  X(h) vilog v,+[A(h)S(h)+B(h)] v:+O(vg)]]. 1 
In  this equation 

A(h) = $(?-2 1 0 g 2 ) + ( y - 2 l o g 2 - ~ ) C ( h ) / % h ,  

C(h)  = Theodorsen’s function = Hi2)(h)/[Hi2)(h)  + iHhQ(h)] and # ( A )  is Sears’ function, 
given in (4). 

The absence of an O(v,) term in this perturbation series contrasts with the high 
aspect ratio (d) perturbation series for a finite-span wing in a two-dimensional un- 
steady flow derived by James (1975) and Van Holten (1976). They both find that, 
provided k, is O( l) ,  C,(k,, d )  = CLo(kl) + d-lCL,(k,)  + . . . . The perturbation parameter 
d-l is analogous to the spanwise wavenumber parameter u2( = k,).  In  the steady case 
k, = 0, the oblique gust series which we derive below does contain an O(k,) term which 
is analogous to the d-l term of steady lifting-line theory. The centre-section lift 
coefficient on a rectangular wing which is suitably twisted to have an elliptic spanwise 
lift distribution is 

where a. is the angle of incidence a t  y = 0. The lift on an infinite-span, sinusoidally 
t,wisted wing of spanwise wavelength 27r/k2, which is equivalent to an oblique gust with 
k,  = 0, is 

CL(y = 0 )  = 2na,{l- * 7 r d - 1 . .  . +}, 

CL = 2n~t~{1 - 4  nk, . . .  +}. 
Since all lengths are non-dimensionalized by the semichord, the wavelength of the 

twisted wing/oblique gust must be equal to 7r times the span of the finite wing for the 
two correction terms to be equal. But when the oncoming flow is unsteady, or the wing 
oscillates, the two cases of an oblique gust and a finite wing are not comparable unless 
k, is large ( O ( d ) ) ,  when James and Van Holten show that the first perturbation term is 

Figure 1 shows the region in the k,, k, plane within which the perturbation series (6) 
for the lift coefficient differs from the accurate numerical value by less than about 10 % 
of its magnitude. Of course the series fails to give accurate results for sufficiently 
large values of k,  but it also fails if k, is too small. This is because the expansion does 
not simply involve small v, but also requires the parameter v2/h ( =  k2/kl)  to be small. 
For example (6) gives an infinite result for the steady case k, = 0, k, # 0. 

Because of the occurrence of v,/h in ( 1 )  we might expect that different series would be 
required for the cases 

O ( d - 2  log a?). 

vz+o,  h = O(V,), 
v2+0,  h = 0 ( 1 ) ,  which is (6), 

t The details are available from the authors as an Imperial College, Aeronautics Department 
lnternal Report. 
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0.1 0.2 0.5 I .o 2.0 5.0 10.0 

FIGURE 1. Ranges of application of incompressible oblique gust theories. 
k ,  

and v 2 + o ,  h = 0 ( l / v 2 ) .  

In fact series (6) is valid for the last case as well as the second and we require only one 
additional series, for v2 --f 0 ,  h = O(v2) .  This case corresponds t o  the expansion for small 
h with v/h fixed, discussed in the introduction. 

Returning to (1) and writing k, = h = av2, where a! = 0(1), gives 

- v: log ( I  - x)> - 

- iaqd( 1 - x) v; - q 2 (  1 - 2) v; log v2 - +2( 1 - x) log ( I  -2) 

+(log2-y+ 1)q2vi(1 -x))+o(v:),  

f(x,) dx, { - qsv, + iav, [log (1  - x) - i log 2 + i y ]  + iav, log v2 K 1 
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where 7 = (1 + a,)& and 6 = 4n - i log (a + 7). The right-hand side of this zquation 
contains terms of order v2 and v, log v, as well as the terms of other orders in v2 which 
previously appeared. Therefore, arguing as before, we expand F(x) as 

F(x) = Fo(x) + v2 log v2 F,(X) + v2 F,(x) + vi(l0g v,)2F3(x) + v; log v, F7(x) + v$F5(x) + O ( v 3 ,  

with similar expansions forf(x) and CL. 
Solving the integral equations of each order in turn, we obtain for this case (k,/k, < 1)  

CL( k,, kz) = 2n2{ 1 + ih log ~2 - 76~2 - i ( 2  log 2 - y )  h - A2 (log ~ 2 ) ’  

+ a+; log v2 - 2i76hv2 log v2 + 2(2  log 2 - y )  A 2  log v, + (*y - 4 - log 2 + 62) 7%; 
+ iyS( g + 4 log 2 - 27)  Av, - (2 log 2 - y ) W  + O( vi)}, (7) 

where h = k,, v, = k,, 7 = (1  + k;/k;)t and S = - i log [k,/k, + (1  + ky/k;)$]. Series 
(7) is the correct expansion when both k, and k, are small, including the two cases 
k, small, k, = 0 and k, = 0, k,small. The former case gives 

CL(kl+O,O) = 2n2{1 +ik,logk,- (an+ilog2-iy) k, 

- k;(log k,), + (8 - in + 2 log 2 - 27) k; log k, 

+ [By - * - g log 2 +$in + in,+ in log2 

- (log 2 ) ,  - in7 + 27  log 2 - r2] k;} . (8) 

Equation (8) is the same as the small-k, expansion of Sears’ result. It has however a 
limited range of validity, as Amiet (1974) has previously observed, mainly because of 
the limited range of accuracy of the trinomial (1  - ik, x - &k; x2) representation of 
exp ( - ik, x). The second of the two cases gives 

CL(O, k, + 0 )  = 2n2 { 1 - ink, + +k; log k, + ( 4 ~  - t - log 2 + in2) k;}, 

which is the small perturbation expansion for a sinusoidally twisted wing of infinite 
span in steady flow, discussed above. 

The range of validity of expansion (7)) moderately small values of k, but very small 
values of k,, is indicated in figure 1.  Expansions (6) and (7 )  are sufficient to cover the 
whole range of small k,. When k, is large, Filotas’ (1969) approximate solution provides 
an asymptotica.lly correct result: 

(k+k,)t-i(k-k,)& 
(k; + 4k, k2)9 ’ CL(kl, k,) = 248 exp (ik,) (9) 

where k = (k; -t k$)*. The region of accuracy of (9) is also marked in figure 1, and it is 
apparent from this thab these expansions, between them, cover most of the k,, k, plane 
to an accuracy of 10 yo. 

3. Two-dimensional compressible unsteady flow 
We consider next the simplest case when the free-stream Mach number is not 

negligible. This is the case of a two-dimensional compressible unsteady flow (k, = 0) .  
The small parameter v defined in (3) is now imaginary and the integral equation (2) is 
equivalent to  Possio’s integral equation since 

K (iz) = - Ini e-+iH(2) 
2 n ( 1. 
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By repeating the incompressible flow analysis with v = ik,  M/P2  = iv,, say, and 
h = k,/P2 and taking account of the additional factor 

exp (ik,  M2x/P2} = exp (ivy x/h}, 

which is expanded for small argument, we obtain t.he compressible flow series : 

c(.h) +A@)- -  X(h)+B(h)  v ;+O(v ; )  , (10) 
2,h ‘ I  1 1  in 1 

-“T(z+m) 
where A(h),  B(h), C(h)  and S(h)  are as defined for (6). This result fails, as the incom- 
pressible one does, when h = O(v,) .  

Since v,/h = M ,  h is always greater than v1 for subsonic flows. But in contrast to  
(6), (10) gives poor accuracy for the lift coefficient when vl/h exceeds fairly small 
values of the Mach number. The expansion corresponding to (7)  should be appropriate 
for this region when the frequency (and therefore A )  is sufficiently small. It can be 
similarly derived, again taking account of the factor exp ( iMv,x) ,  to  give 

C,(k,, M;v,+O, M = O(1)) = (Znd//?){i +ihlogh+ihl f (31)+~o-gM2]  

- A 2 ( l ~ g h ) 2 - h 2 1 ~ g A [ 2 f ( M ) + 2 C o -  + ] -h2[ ( f (M)+Co)2-9 (1  + M 2 ) ( f ( M ) + + M 2 )  

(11) + gM2 log (BM) + & - +C0] + O(A3)}, 

where f ( M )  = (1-p)logM+plog(1+/4)-log2 

and 

The asymptotic Compressible result analogous to  the high wavenumber result of 
Filotas for inconipressible flow [equation (9)] is the transonic ( M  = 1) result given in 
Graham (1970b) .  Either of these two formulae can also be deduced from the other by 
applying the similarity rules. The region of the k,, 31 plane of accuracy of (10) and (1 1) 
is shown in figure 2 .  

co = +in - log2 + y.  

4. Oblique compressible gusts 
We adopt the same procedure for the general oblique, compressible case (k ,  # 0, 

M # 0) with 

real or imaginary according to the size of 6 = k, 31/k2/3. However, the factor 

exp { ik ,  M 2 . r l p 2 }  

now introduces an additional complication because k ,  M2/P2 can no longer be expressed 
as a simple combination of h and v. It is therefore convenient to consider the expansion 
in t’erms of the two small parameters 

11, = k I x / p ,  v2 = h,/lp. 

If the expansion is derived for small v1 and v2 then the general parameter v, whose 
absolute value is never greater than the larger of these, is also small. The factor 
exp {ik, M2x/D2} can be written as before as exp {iv;x/h) and expanded for small 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
M 

FIGURE 2. Ranges of application of compressible two-dimensional gust theories. 

argument. The result for a compressible oblique subsonic gust for which 
k, M/P2 = u1 < 1, kJP = v2 < 1 and h = k, /p2 = O(1) is 

where A(A), B(h),  C(h )  and # ( A )  are as defined in (6).  
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This result contains both the results (6) and (10) given previously. In  the special 
cases when v1 = v, (8 = l), the second-order logarithmic terms cancel with part of the 
v; term, and so do the A ( h )  and B(h) terms. The result is simply 

As in the incompressible case the expansion (11)  fails when h = O(v,). In this case 
the expansion analogous to (7) applies: 

C,(k, ,k, ,M) = (27fd/fl)(1 +Bihlog(v;-vq)-y6(v;-v;)-ih(2log2-y)+v;/2iA 

- th2[log (v; - v;)y + *y2( v; - v;) log (v; - v;) + 4.; log v1 

- iyGA(v$ - Y?)+ log (vi - v;) + (2 log 2 - y )  A 2  log (v; - v?) 

- (210g2-y)2h2-4y(v2 = O)S(v, = O)hv1+(~iT- log2+~y)  v:- V;/4h2+O(V;)}, 

(13) 

+ (By - $-log 2 + 6,) y2(ui - v?) +iyb'($ + 4log 2 - 2y) h(v$ - v?)i 

where 

The conditions for expansion (13) exclude the possibility that 17, = 17,. 

5. Comparison with other approximate formulae 

flow is 
Mugridge's (1 971) formula based on 1ift.ing-line theory for unsteady incompressible 

CL(kl, k,, ICI = 0 )  = 2n&S(k,) F(k,, k,). 

The funct.ion F is a rational combination of Bessel and other functions for all k, and k,. 
We can expand F for small k,lk, to give 

Comparing this equation with (5) shows that Mugridge's formula contains the 
correct orders of k, but not the correct coefficients. On the other hand the expansion of 
F for the quasi-steady case k, = O(k,)  with both small agrees with (7) to first order in 
k,. Failure of lifting-line theory in the general unsteady case ( k ,  = O(1)) occurs be- 
cause the downwash velocity correction due to the trailing vorticity is of the same higher 
order (kg log k,, etc.) as the error incurred by applying locally two-dimensional analysis 
a t  each section of the aerofoil. For lifting-line theory to work, these error terms 
(t,ypically O ( d - ,  log d )  etc.), which are neglected, must be of higher order than the 
downwash correction' (typically O ( d - I ) ) ,  which is incorporated. 

Filotas' (1969) formula for the incompressible lift coefficient is 



220 J .  M .  R.  Graham and I .  Kullar 

where the functionainvolves double sums of repeated integrals of Ko(k2).  As mentioned 
above, the asymptotic expression derived from (14) for large k is correct. But (14) is not 
correct for small k, where it becomes 

c, = 2n8{1 + ik, log k + O(k) } .  

This is different from expansion (7)  in all terms after the first. Likewise the expansion 
of (14) for small k, = O(k l )  differs from (6) because Pilotas’ result only approximates 
S(k , )  to  order k, when k, = 0. 

Amiet (1974, 1976a) also gives approximate solutions for oblique incompressible 
and compressible gusts, but as these are derived from his compressible result through 
the similarity rules it is sufficient to consider only the latter. 

For the compressible two-dimensional gust Amiet (1  974) has improved Osborne’s 
(1973) solution by comparing the predicted pressure distribution with the earlier 
quasi-steady result of Miles ( 1 9 5 0 ~ ) .  By analogy with this Amiet derives the following 
formula for the lift coefficient: 

C,(k,, M )  = (2n8/P) # ( A )  {JO(v:/h) - iJl(v:/A)}eihf(M), (15) 
wheref(M)=(1-,8)logM+,8log(1+P)-log2 and vl = k , M / , @  and h = k , / P 2  as 
before. This expression gives the same amplitude for the lift as Osborne, shown in 
figure 3 for comparison with the perturbation series (10) and the numerical results. But 
the phase change brought about by the exp { ih f (M)}  factor considerably improves the 
accuracy of the individual real and imaginary parts of C,, particularly a t  higher values 
of M ;  see figure 4. The reason for this can be seen if Amiet’s expression (15) is expanded 
as a series in v,, assumed small. Then 

2 m 8  1 1 

P 2h cL(k,, M )  = -#(A) v:log v1 +;- (+log 2 + i logh  + #) vZ,+ O ( v 3 ) .  (16) 

This series does contain a compressibility phase-change term of order v? log vl, which 
was absent from Osborne’s solution. Comparison with (10) shows that (16) contains 
some but not all of the terms which make up the coefficients of vylog vl and v: in (10) 
when this series is in turn expanded for small A. Amiet’s formula, like Mugridge’s, does 
not therefore approach the vl = 0 Sears limit in the correcb way unless k, also tends to  
zero. On the other hand it does provide an approximate solution to the problem which 
is never very inaccurate (figures 3 and 4) whereas the perturbation solution (10) 
rapidly diverges beyond v, - 0.5. 

Amiet’s methodof approximation is analogous to Mugridge’s in that both approaches 
implicitly assume that O(v)  terms will occur in the expansion in relation to  which 
the higher-order v2 terms in the differential equation can be ignored. Both methods 
thereafter solve the problem as far as possible without further approximation, so that 
parts of the correct higher-order terms occur in their solutions. But as is the case with 
the classical steady lifting-line theory the resulting expressions are moderately 
accurate, and in particular do not diverge, over the whole range (0, co) of the small 
perturbation parameter v. 

If, however, (15) is expanded to second order for small k,, with M held constant, we 
obtain the following: 

c L ( k , M ; k , + O , M  = O(1))  = (2n8/@){1 +ihlogA+ih[f(M)+C0-+M2] 
-h2(logh)2-h2logh[f(M) +2C0-+(1 +M2)]  -h2[Cof(M) -+C0M2+ +f2(M)  
- + M ~ ( M )  + 4x4 + c; - +co + $1 + o(~3)). 
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FIGURE 3. Variation of the lift-coefficient amplitudes with Mach number in compressible un- 
steady flow. -.- x -.-, numerical; -0-, equation (10); --n--,Amiet (1974),Osborne (1973). 
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FIGURE 3. Variation of the lift-coefficient amplitudes with Mach number in compressible un- 
steady flow. -.- x -.-, numerical; -0-, equation (10); --n--,Amiet (1974),Osborne (1973). 

This agrees with (1 1 )t exactly up to order k2,(log k,)2 (or vl(log v1)2). There is a difference 
in the k; log k, and k! terms of 

C,,(eqn ll)-C,(eqn 15) = ( 2 n a / p ) { n . L l o g h ( f ( M ) + ~ M . L ) - n h " ( ~ f 2 ( M )  +C, f (M)  

+ $M2{log (&If) - f ( M )  - c, - i}] + O(h3)). 

Kemp & Homicz (1976) have shown Amiet's result to be correct to first order in k,, 
and the present analysis merely extends this, showing that the k:(log k J 2  term is also 

t We are indebted to one of the referees for suggesting this comparison. 
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ReCL/CL(k, =0) 
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1 Y\ 1 I I d  

- 0.5 L 
FIGURE 4. Variation of the lift coefficients with reduced frequency in compressible unsteady flow. 

M = 0.6. -.- X -.-, numerical; -0-, equation (10) ; --&-, Amiet (1974). 

correct, when considered as an expansion for low frequencies a t  a fixed Mach number. 
The fact that  the next two terms k2, log k, and k2, are different reflects the removal of the 
u;q5 term from the original equation for the potential, since this term first produces 
terms of this order in the solution. 

Amiet’s solution is, however, fairly accurate over a much larger region of the k,, M 
plane than (11)  because some of the higher-order k, terms (k! and above) which contri- 
bute to the error in the latter series have been included in (15). In  particular the series 
expansion of S(A) to order A2 is accurate over only a very small range of A, and the 
error is therefore considerably reduced by retaining this factor to its full accuracy. 

In those regions where the first-order corrections to Sears’ solution implied by ( I  5 )  
do not occur, the correction is of second order as given by (10). 

If Mugridge’s incompressible lifting-line approximation (1  3) is expanded further 
for small k, and then the similarity rules are applied, the resulting series is the same to 
order ui as (16), which was derived from Amiet’s expansion, except for a difference in 
the second term of - ui/4iA. 

Adamczyk (1974) has also derived an approximate formula for a similar problem 
which occurs when a swept aerofoil encounters a compressible sinusoidal gust. This 
formula is derived by the O(v,) approach in a similar way to those of Amiet and Mug- 
ridge and is therefore strictly a correct approximation only for small values of the 
frequency parameter. We have confined the analysis of the present paper to  the lift 
coefficient on an aerofoil in an oblique compressible gust convected at the free-stream 
speed. It is of course quite possible, but more complicated, to extend the analysis to 
cover the pitching moment and other force coefficients, and the same approach can also 
be used to study other unsteady upwashes such as the Kemp (1952) type and those that 
arise from bending and torsional oscillations and incident acoustic waves. The general 
points concerning the order of correction terms made in this paper apply to all these, 
but we have concentrated here on the lift coefficient and the convected oblique gust 
because of their relevance to the study of the effects of turbulence on bending forces 
and noise generation. 

I n  bhe case of an aerofoil in a turbulent compressible flow the analysis which we have 
given in this paper shows that the errors incurred by using (or alternatively the 
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appropriate corrections to be made to) Sears’ theory, i.e. an ‘incompressible strip 
theory ’, are of order M2cIP2L, c2/P2L2, M2c/P4L2 and their associated logarithmic 
terms. Here L is the integral length scale of the turbulence, which is inversely pro- 
portional to the wavenumbers of the energy-containing eddies, and c is the chord of the 
aerofoil. Some of the approximate theories discussed above give the terms of order 
M2c/F2L correctly, but not all the other terms. By comparing the relative sizes of the 
three orders of magnitude above, approximate theories such as Amiet’s should be 
expected to perform best if restricted to large scales of turbulence, but over a wide 
Mach number range. 

6. Conclusions 
General perturbation series have been derived to  second order for the lift induced 

on an aerofoil by a compressible oblique sinusoidal gust. The results are given in (12) 
and (13). Comparison with Amiet’s and other approximate solutions shows that these 
in general have incorrect asymptotic behaviour as the spanwise wavenumber k, or the 
compressible reduced frequency parameter k, M / P 2  tends to zero, with k, held con- 
stant. On the other hand Amiet’s and Mugridge’s solutions do provide formulae which 
are approximately correct over the whoIe range of these parameters, and give the 
correct first-order terms in the series when k, tends to zero. 

Filotas’ solution provides a useful high wavenumber asymptote but seems to us to 
be less useful elsewhere since it involves a lengthy numerical summation. 

Compressibility and three-dimensionality only introduce perturbations of second 
order into the basic two-dimensional solution for incompressible unsteady flow past an 
aerofoil, unless the frequency parameter k, also tends to zero, when the perturbation is 
of first order. 

Part of this work was carried out while I. Kullar was supported by a Science 
Research Council Research Studentship. 
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